Примерно месяц спустя участники семинара в Беркли получили по электронной почте письмо, озаглавленное «Физика победила!». Эллингсруд и Штремме нашли ошибку в своей компьютерной программе, и после ее исправления результат совпал с результатом группы Канделаса. С тех пор было проведено немало количественных проверок надежности расчетов в теории струн с помощью зеркальной симметрии. Теория струн с триумфом прошла все проверки. Еще позже, почти через десять лет после открытия физиками зеркальной симметрии, математики добились значительных успехов в выявлении математических принципов, лежащих в основе этой симметрии. Используя фундаментальные результаты математиков Максима Концевича, Юрия Манина, Ганга Тиана, Джуна Ли и Александра Гивенталя, Яу и его коллеги Бонг Лиан и Кефенг Лиу нашли, в конце концов, строгое математическое доказательство для обоснования формул, используемых для подсчета числа сфер внутри пространств Калаби-Яу, разрешив проблемы, которые сотни лет оставались камнем преткновения для математиков.
Эти исследования не просто оказались успешными для конкретного случая, но и выявили ту роль, которую физика начала играть в современной математике. Довольно долгое время физики рылись в архивах математических журналов в поисках средств для построения и анализа моделей физического мира. Сейчас, с открытием теории струн, физика начинает выплачивать свой долг и снабжать математиков новыми мощными подходами к неразрешенным проблемам. Теория струн не только предлагает единое описание физического мира, но и помогает установить глубокий и прочный союз с математикой.
Глава 11. Разрывая ткань пространства
Если непрерывно растягивать резиновую пленку, рано или поздно она порвется. Этот простой факт заставлял физиков годами обращаться к вопросу, возможно ли подобное по отношению к ткани пространства, создающего Вселенную. Может ли эта ткань разорваться, или такое вводящее в заблуждение представление есть результат слишком буквального понимания аналогии с резиновой пленкой?
Общая теория относительности Эйнштейна отвечает на вопрос о возможном разрыве структуры пространства отрицательно1'. Уравнения общей теории относительности основаны на римановой геометрии, которая, как отмечалось в предыдущей главе, позволяет проанализировать искажения свойств расстояний между соседними точками пространства. Чтобы формулы для расстояний были осмысленными, в математическом формализме требуется гладкость самого пространства. Понятие «гладкости» имеет конкретный математический смысл, но общеупотребительное значение слова «гладкость» хорошо передает суть этого понятия: гладкий — значит без складок, без проколов, без отдельных «нагроможденных» друг на друга кусков, без разрывов. Если бы в структуре пространства существовали такие нерегулярности, уравнения общей теории относительности нарушались бы, оповещая о космической катастрофе того или иного рода: зловещая перспектива, которую наша Вселенная благоразумно обходит.
Впрочем, эта зловещая перспектива не отпугивала склонных фантазировать теоретиков, которые годами исследовали возможность квантово-механического обобщения классической теории Эйнштейна, допускающего существование проколов, разрывов и слияний ткани пространства. Тот факт, что по законам квантовой физики на малых расстояниях происходят неистовые флуктуации, позволял предположить, что проколы и разрывы могут быть обычными явлениями в микроскопической структуре пространства. Понятие пространственно-временных червоточин (В русскоязычной литературе более распространенным является термин «кротовые норы». — Прим. ред.) (хорошо знакомое поклонникам фантастического сериала «Звездный путь») опирается на подобные предположения. Идея проста. Представим себе крупную корпорацию, управление которой находится на девяностом этаже одного из небоскребов. Исторически сложилось так, что отделение корпорации, с которым сотрудникам этого управления в последнее время все чаще приходится связываться, находится на девяностом этаже соседнего небоскреба. Так как переносить один из офисов в другое здание нецелесообразно, разумным решением было бы строительство моста, соединяющего две башни. Тогда сотрудники получили бы возможность переходить из офиса в офис, не спускаясь вниз и поднимаясь вверх на девяносто этажей.
Пространственно-временная червоточина играет схожую роль. Это мост или туннель, служащий укороченным маршрутом из одной области вселенной в другую. Пример червоточины в двумерной вселенной показан на рис. 11.1. Если управление «двумерной» корпорации находится вблизи нижней окружности рис. 11.1 а, то в ее отделение на верхней окружности можно попасть, лишь путешествуя по всему U-образному маршруту, ведущему из одного края вселенной в другой. Но если ткань пространства может рваться с образованием проколов, изображенных на рис. 11.1 б; если эти проколы могут «срастись» краями, как на рис. 11.1 в, то две ранее отдаленные области соединятся пространственным мостом. Это и есть червоточина. Нужно отметить, что хотя червоточина и мост между небоскребами имеют некоторое сходство, между ними есть и существенное различие. Мост между небоскребами пролегает по существующему пространству, т. е. по пространству между небоскребами. Червоточина, в отличие от этого, образует новое пространство, ибо изображенная на рис. 11.1 а двумерная искривленная поверхность — это все, что имелось. Область вне поверхности лишь артефакт неадекватной картинки, которая не может изобразить U-образную вселенную иначе как погруженной в наш трехмерный мир.
Рис. 11.1. а) «U-образная» вселенная, в которой достичь одного конца с другого можно лишь после длительного космического путешествия, б) Ткань пространства рвется, и два конца червоточины начинают вытягиваться, в) Два конца червоточины соединяются, образуя новый мост — «срезая путь» между двумя концами вселенной.
Червоточина создает новое пространство и потому прокладывает новую пространственную территорию. Существуют ли червоточины во Вселенной? Этого не знает никто. И если они действительно существуют, неясно, могут ли они быть только микроскопической формы, или перекрывать обширные области пространства, как в фантастических фильмах. Существование червоточин в реальном мире во многом определяется тем, возможен ли разрыв структуры пространства.
Другой яркий пример того, как ткань пространства может растягиваться до предела, дают черные дыры. На примере рис. 3.7 мы видели, что сильнейшее гравитационное поле черной дыры приводит к настолько сильной искривленности пространства, что оно выглядит проколотым в центре черной дыры. В отличие от червоточин, есть веские экспериментальные свидетельства в пользу существования черных дыр, и вопрос о том, что происходит в центре дыры, приобретает конкретный научный характер. В экстремальных условиях внутри черной дыры уравнения общей теории относительности становятся неприменимыми. По мнению некоторых физиков, в центре черной дыры действительно имеется прокол, но мы ограждены от этой космической «сингулярности» горизонтом событий, не позволяющим даже свету вырваться из гравитационной ловушки. Такие соображения привели Роджера Пенроуза из Оксфордского университета к «гипотезе космической цензуры», согласно которой подобные пространственные особенности возможны лишь в местах, тщательно скрытых от наших глаз пеленой горизонта событий. С другой стороны, до открытия теории струн некоторые физики считали, что корректное объединение квантовой теории и общей теории относительности «залатает» бросающиеся в глаза бреши в ткани пространства, сгладив его квантовыми поправками.
С открытием теории струн, органично связывающей квантовую теорию с гравитацией, появилась твердая почва для исследования этих вопросов. На сегодняшний день они окончательно не решены, но в последние годы были решены тесно связанные с ними вопросы. В этой главе мы покажем, что в теории струн впервые явно демонстрируется возможность разрыва ткани пространства при определенных физических явлениях (в некоторых отношениях отличных от явлений пространственных червоточин и черных дыр).